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ANALOGS OF LEFSCHETZ THEOREMS
FOR LINEAR SYSTEMS
WITH ISOLATED SINGULARITIES

B. G. MOISHEZON

In [6] we briefly described the construction of the first examples of
(orientation preserving) homeomorphic and not diffeomorphic surfaces of
general type. This construction depended on the existence of “big mon-
odromy diffeomorphism groups” for some classes of algebraic surfaces,
which can be deduced from results of Ebeling ([3], [4]) on isolated sin-
gular points. To relate “local” and “global” in our context we need some
analogs of classical Lefschetz theorems on homologies and vanishing cy-
cles.

In the present article we give a detailed construction of homeomorphic
and not diffeomorphic surfaces of general type (§4). We also provide the
proofs of all necessary facts on homologies and vanishing cycles of complex
algebraic varieties which cannot be found in the literature. Our exposition
of these facts is such that it can be used for future references. (In future
development of Donaldson theory we expect more examples and a better
understanding of homeomorphic and not diffeomorphic surfaces of general
type.)

This article is actually a result of some very fruitful discussions with R.
Friedman to whom I would like to express my gratitude.

All homology groups which we consider have integral coefficients.

1. Vanishing cycles for holomorphic maps

Let f: W — T be a holomorphic map of connected complex manifolds
W and T.
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Definition 1. Let

S(f) = {x € W|df, is not surjective},
q(f) = {x € S(N|fls¢y is quasifinite at x, that is x is
an isolated point in (f]s5) " f(x)}.

Remark. S(f) is a closed complex subvariety in W, and ¢(f) is open
in S(f). Thus g(f) is a locally closed complex subvariety in W

Assume that f: W — T is proper and surjective. Let m = dime W — -
dimc T.

Definition 2. Let

Sp() =F(S(N),  a(f) = Sf(af)

Sp(f) is a proper subvariety in T, so that T—S; (f) is connected and also
open dense in 7. It is well known that fly_ -1s,y: W — f71H(Sp(S)) —
T - Sy(f) is a C*®-bundle. Denote E, = f~!(¢) for all ¢t. For any ¢;,t; €
T - S,(f) and any path y in T — S;(f) connecting ¢, with ¢, we denote by
v, a diffeomorphism £, — E,, induced by y and by ¥« = H,, ().

Take v € g(f) and let s = f(v). By definition of ¢g(f) the point v is an
isolated singularity of f~1(s), which is a local complete intersection since
W and T are nonsingular. Taking small neighborhoods U, of v in W and
Us of s in T with f(U,) = U, we can consider Sfeg,: U, — Uy as a local
deformation of (f~!(s) N Ty, v). We can embed f;, : U, — U in a versal
family of deformations of (f~'(s) N Uy, v) (see [7]). Denote this versal
family by F,: Uy — U~ So we identify U with a closed analytic subset
in U7, U, with F,!(U;) and flg,: Oy — Us with

Fyl -1y Fo ' (Us) = Us.

Let D, = {t € U |F,;'(7) is singular}. It is known that D, is irre-
ducible, of codimension one, and that for all nonsingular points 7 € D,,
F,~'(1) has only one singular point which is a nondegenerate quadratic
singularity. Denote D!, = {t € D, |t is nonsingular}, and let ¢,, T € D), be
the singular point of F, !(1).

For any 1o € D], there exists a small neighborhood d;, of 7 in U;~ such
that vVt € d;, — d;, N D, on F,7!(1) a (closed) Milnor fiber correspond-
ing to ¢, is defined (see [7]). Denote such a Milnor fiber by M(t,c,,).
¢z, 1s a nondegenerate quadratic singularity, so H,,(M(7,c,,)) is infinite
cyclic. Choosing a generator in H, (M (7,c,,)) we get the so-called van-
ishing cycle in M(t, ¢;,). Denote it by &(z, ¢;,). The class d(z, c,,) can be
represented by a smooth m-sphere on Int(M (7, c;,)) which we shall denote
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by é(t,c;,). Taking a loop (79, ¢;,) representing the “positive” generator
of n,(d;, — d:, N Dy, 7) and considering the corresponding “monodromy”
in F,: Uy — Uy we get a diffeomorphism 6(t, ¢r): M(7,¢r,) — M(T,¢q,)
which is identity on M (7,c;,). Extending this difftfomorphism by iden-
tity to F,;7!(7) — F,;7 (1) we get ©~ (1, ¢,,) € Diff(F,;!(1)) which we shall
call a Dehn twist of F!(7) defined by 8(z, ¢;,). We should remember that
© ~ (1, ¢,) 1s identity outside a regular neighborhood of é(z, ¢;,) in F; ! (1),
and that ©~ (7,c;,) is well defined up to homotopy by ¢, and 7 sufficiently
close to 7 in U™,

Considering small closed balls By~ in U;~ with the center s and B;” in U
with the center v such that F,~!(t) is transversal to 8 B;> for any 7 € B,
we can replace U;~ by Int(B; ) and U;~ by F; !(Int B )nInt(B; ). Thus
we will have well-defined boundaries for U, Uy, F;!(t) Vr € U, In
particular we will have a trivial C*°-bundle

Fv,UreU‘(a(Fv_l(T)): U (@ (FU_I(T)) - U~
’ ety

and a C*°-bundle
Fy: UPUo(F7 N UN)) — FyY(Dy) — US = D,

v

consistent with a trivial C*-bundle structure for

FvlureuA(a(Fv‘l(z)): U @@F () — Uy
! ey

For all t € U~ — D, we denote F, !(7) U 8(F, (1)) (in older notation
F;Y(1)n B;) by M(t,v), and call it a Milnor fiber corresponding to v.

For all 75,7, € Uy~ — D, and any path y in U~ — D, connecting 7, with
72 we denote by y,~ a diffeomorphism induced by y from M(7,v) to
M (7, v) which is an identity on the boundary with respect to a trivializa-
tion of F,| AES U chosen above. »

Fix t; € Uy — D,,. Take any 19 € D], and any simple path y from 79 to
7, with yND, = 19. Considering as above a small neighborhood 4, of 7y in
Uy and v € yn(d,, —d:,ND,) we get a Milnor fiber M(1/,¢,,) € M(7',v)
and a smooth sphere 6(7/, ¢;,) representing a vanishing cycle in M (7', c;,).

Let ' be part of y from 1’ to 7,; we can assume that ¥’ is a simple
path. Denote (71, ¢q;7') = W,7(8(7, ¢ry)). We shall say that 6(ty, ¢y 7")
represents a vanishing cycle in M(ty,v) which is an element H,,,(M(1;,v))
denoted by d(t1, 79; 7). Extending ©~ (7', c;,) by identity to a diffeomor-
phism of M(7',v) and denoting it again by ©~ (7', c;,) we define a Dehn
twist of M(7;,v) determined by 6(71, c;,;7’) as follows:

6~ (6(‘[1,6’10; )’I)) = l//y/’\ 00~ (Tl>c‘ro) o (Wy/’\)—l
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Denote by A~ (1, v) the set of all vanishing cycles {J(t, To; )} obtained
for all 7o € D} and paths y from 1 to 7; as above.

For any compact C*°-manifold X with the boundary X we denote by
Map(X, dX) the group of homotopy classes of diffeomorphisms of X the
mapping class group of X, which is identity on the boundary. When X =
& we denote this group by Map(X), mapping class group of X.

Each ©~ (6(1',c¢,;7')) defines uniquely an element in Map(M(1,v),
OM(1,,v)) which depends only on the choice of 7y and y. We denote this
element by ©~ (7, 79;7) and call it the Dehan twist defined by a smooth
sphere 6(7i, c;,; ¥’') representing a vanishing cycle in M(1(,v).

Denote by G~ (11, v) the subgroup of Map(M(1,,v),d M(7;,v)) gener-
ated by Dehn twists ©~ (1, 7o, ¥) corresponding to all choices of 7y and y as
above. G~ (11, v) acts naturally on H,,(M(7,,v)) and on the set A~ (7,,v)
of all vanishing cycles in M(ty,v).

From the irreducibility of D, it follows that G~ (7;,v) acts transitively
on A~ (11,v); actually A~ (t;,v) is a G™ (1, v)-orbit in H,,(M(z,v)) (see
[7]).

Now take 7y € U; — Sy(f) = Us — D, N Us. From M(1,v) C E;
and the corresponding i,,: H,(M(t,,v)) — Hy,(E;) we obtain the set
A(11,v) = in(A” (11,7)). Elements of A(7,,v) we call vanishing cycles
induced by v on the neighboring fiber.

Using M(7;,v) C E;, we extend by identity each ©~ (1;, 79; ) as above
to an element of M ap(E;,), which we denote by &(1,,v;7y). O(11,v;7)
defines an automorphism of H,,(E; ). We denote the last automorphism
by 0(7,, 79; ) and call it the Picard-Lefschetz transformation defined by the
vanishing cycle 6 = i,,(d(11, To;7)). It is convenient to write 85 instead of
0(t1,70; 7).

It is known that 85 is defined by the formula

05(z) = z 4+ (—=1)\mHDmE2/2(7 . 5§,

Now take any t € T — Sy(f). For any s € ¢,(f), v € q(f), f(v) = s, and
any simple path I" connecting s with ¢ such that I' N S,(f) = s we can
choose 1, € I' — s sufficiently close to s, and denoting by I the part of I'
from 1, to ¢t we define the set

A6,0,T) = ypn (A11,0).

Elements of A(f,v,I") we call vanishing cycles on E; induced by v and I.
Using elements ©(7;,v;y) € Map(E,,) defined above, we define ele-
ments (¢, v;y,I") € Map(E;) by

O(t,v;7,T) = yr 0 O(1,v;9) o (¥n) 7L
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If § is an element of A(t,,v) corresponding to ©(t,,v;7y), and &, =
wr-(0) € A(t,v,I'), we define the Picard-Lefschetz transformation 65, €
Aut(Hy,(E;)) by 05(z) = z + (=1)m+00m+2/2(7 . §)5,. It is clear that §;, is
induced by a diffeomorphism of E; corresponding to ©(z,v;y,I).

Definition 3. Denote by A(¢) the union of A(¢,v,I') for all v € g{f)
and all I in T connecting f(v) with ¢ and such that TN S,(f) = f(v). We
call the elements of A(¢) the vanishing cycles in E,. For any §, € A(t) we
have a Picard-Lefschetz transformation ;s corresponding to J;.

Remark. Remember that each 6, is induced by a diffeomorphism of
E,, a “Dehn twist” corresponding to a smooth m-sphere 8, representing
the class 6, € H,,,(E,).

Denote by G(¢) (resp. G(¢,v;1")) the subgroup of Aut(H,,(E,)) generated
by all 85, € A(t) (resp. by all 6, € A(t,v;I)).

It follows from above that G(¢,v;I") acts transitively on A(z,v;I). In
particular, each A(z, v;I) belongs to a single G(¢)-orbit in A(¢).

Denote by ¥, : 7, (T — Sp(f), t) — Aut(H,,(E;)) the homomorphism de-
fined by the C*-bundle structure on fly_ 15,y W — f71(Sp(f)) —

T - S,(f) (a “monodromy homomorphism” of f: W — T).

Proposition 1. Assume that q(f) is connected and that Im¥Y, belongs to
G(t). Then A(t) belongs to only one G(t)-orbit in H,,(E,).

Proof.

Claim 1. Vv € q(f) let U, and Uy, be small neighborhoods respec-
tively in W and T considered above. Then Yy, € g(f) there exists an open
neighborhood Q,, in ¢(f) such that

(1) Qvo - f_l(Uf(vg));

(2) Yv € Qu, and 1 € (Ugyy) — Uy N Sp()) N (Usiwy = Uiy N Sp (),
A(t,v) and A(t,vg) belong to one and the same G(¢)-orbit in H,,{E,).
Proof. Let Fy,: Uy — Ug,  be aversal family for (E 1, Uy, o) such
that Uy, can be 1dent1ﬁed w1th a closed analytic subset in U, | , Uy, with
uo (Uf w)) and flU UUO — Ujy) with FvoIU Uo (Uf Uo) = Uswo)-
Denote Dy, = S(f)N Uv0 Taking Uv0 smaller we can assume that Vv € Dv0
3 neighborhoods Y;> of v in Uy, Y of f(v) in U" , Y, of vin U,
and Yy in Uy) such that F, (Y") = Yf’(‘v) and Fvlyv‘- YU — Y7, isa
versal family for (E ) N Yy, v), Yy is a closed analytic subset in Y7, ),
Y, coincides with (F,|,-)"'(Y,), and F,|y,: ¥, — Yy, coincides with
flf’,,: YU - Yf('v)-
Take any | € Yy,) — Yoy N Sp(f). Then from the definition of A(z,v)
it follows that A~ (¢;,v) C A~ {¢;,v0) and G~ (¢;,v) C G~ (1, v0).
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Since G~ (¢,v) (resp. G~ (t;,v0)) acts transitively on A~ (¢;,v) (resp.
on A~ (#1,v0)), we see that A~ (¢;,v) and A~ (¢, v9) belong to one and the
same G~ (¢, Vg)-orbit in H,, (M (t;,vp)).

The mapping iy, : Hpn(M(¢,v0)) — Hn(E,) induces a homomorphism
G~ (t1,v0) in G(¢). Thus we see that A(z;,v) and A(¢;,vp), which are.iy,-
images of A~ (¢,v) and A~ (1, vp), belong to one and the same orbit of
G(t) in Hn(E,). _ N

Now let @y, = U,, N q(f) = U,, N S(f), and recall that g(f) is open
in S(f). Denote U}(v = Uy — Sp(f) N Uy, and take any v € @y, and
t € Uf,,y N Ug,,. Considering for v the point #; as above we can assume
also that t, e U ) n U oy Let y' be a simple path in U/ oy N U’
connecting ¢; with ¢.

From our definitions it follows that A(t,v) = - At,0), A(L,v) =
v, A(t1, V), and that the isomorphism y,.. induces an isomorphism from
G(ty) to G(t). Thus A(f,v) and A(z,vg) belong to one and the same orbit
of G(t) in Hy(E,). q.ed.’

We continue to use the notation U}(U) = Usw) — Usy N Sp(f) for v €
q(f)- : ;
Claim 2. Let vy, v € 4(f), t1 € Up,,,, 12 € Uy,,,. Then 3 a path in
T —Sy(f) connecting ¢, with ¢, such that y/, (A(tl,vl),and A(tz2,v7) belong
to one and the same G(f;)-orbit in H,,(E,,).

Proof. Let 7 be a path in ¢g(f) connecting v; with v;, and recall that
g(f) is connected. Using open neighborhoods @, constructed in Claim 1
above we get an open covering {Qy,v € 7} of ¥ in q( f). Take from it a
finite open covering {Q,n,/ = 1,---,p} such that v(!) = v;, v = v, and
vie{l,---,p—1}, Q,u N Quuen # 2.

In each @, N Quusij, L €{1,---,p — 1}, choose a point w'/). Clearly

f(w(/)) S Uf('u(/')) N Uf(v(’“)) (Clalm 1(1)),

SO
Uf(w(” N Uf (D) nU; Fwi+D) # .
Take t Uf(u (1 (UU me(U 1+l)) By Clalm 1 A(t(l w(l ) and A( )

(resp. A(tY),w ) and A(t®,vU+1)) belong to one and the same G.( ))-
orbit in H,, (E,u ). Thus A(t vy and AP, v*1)) belong to one and
the same G(¢! ) orblt in Hp,( ,(/) Let 10 = ¢ and t?) = 1. So we get
the sequence {1,/ =0,1,--.,p}. It is clear that ¥/ € (0, 1,--- ,p — 1) the
points 1), {*D € U}, .., . Let y(/) be a simple path in U/, .., connecting
() with ¢/*+1). From the definition of A(¢,v) it follows that

(A( l+1)) A(Z(H'l),’U(H'U).
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Let @ = v;. By y,-(G(t")) = G(e!*+Y) we see that ) (A(D, v D))

and A(¢tU*+1) v(+1)) belong to one and the same G(¢!+D)-orbit in H,(E ).
Slmllarly, if y=7(0)oy(1)o---oy(p—1), then y,-(A(#?,v®)) and

A(t®),v(P)) belong to one and the same G(¢?))-orbit in H,,(Eq ).

Now recall that v@ = v, 10 = ¢, v®) = v,, and P =¢,. q.ed. "

Consider now any ¢ € T — S;(f) and any J,,d> € A(t). From the
definition of A(z) it follows that for each J; (i = 1,2) there exist v; € q(f),
¢t in U}(w), path I in T — S;(f) connecting ¢; with ¢ and 6] € A(t;,v;)
(C Hn(E)) such that §; = yr-(J]). Using Claim 2 we see that there
exists a path y in T — S(f) connecting ¢, with ¢, such that y,.(A(¢,v1))
and A(f,,v,) belong to one and the same G(¢,)-orbit in H,,(E;,). LetT =
I"l“ oyol%. From A(t,v;,I') = !//1-;~A(t,~,v,-) (i = 1,2) it follows that
Y(T)(A(¢,v(,T7)) and A(¢, v,,1%) belong to one and the same G(¢)-orbit in
H,,(E;). By our assumptions ¥(I') € G(t). So A(¢,v,T) and A(¢,v2,T%),
and in particular J; and J, belong to one and the same orbit of G(¢) in
H,(E,). q.ed.

Assume now that dime 7 = 1. Consider again v € ¢(v), s € g,(f),
f(v) = s, small neighborhoods U, of s in T, U, of v in W and a versal fam-
ily F,: Uy — Uy such that U; can be identified with a closed analytic sub-
setin U™, Uy with F7!(Us) and f|, : Uy — Us with Fy |1y FyH(Us) —
Us. :

As above denote D, = {r € U |F, !(z) is singular} and D), the nonsin-
gular part of D,,. Let Z = D, — D,,. If Z # s we say that fg) = f|, : U, —
Us is stable. Tt is equivalent to say that v is a nondegenerate quadratic
singularity in f ) (s).

Assume Z > 5. Because U, and Uy are nonsingular, Us; N Z = s and
codlmU: Z > 2, there exists a nonsingular 2-dimensional complex analytic
subset U? in U; such that U = Fv‘l(Us(z)) is nonsingular, U® > U,
and Us(z) N Z = s. Taking all neighborhoods smaller we can assume that
U? = U, x A, where A is an open disc in C!, that U\* = U, x A, A> (0),
embeddings U, ¢ U and U, ¢ U coincide with U; x 0 C U; x A and
U, c U, x A, and that .

Uy x A =)UP
‘va| 2 W\
(Uy x A=)UP) —— 3 A

proj

is commutative.
Letg = F1,|Uv(z>: Uéz) — Us(z) and, VA € A, fu) = &lg,«1: Uv x4 — Uy x4

Let C, = D, N UP. Since ZNU® = s (= s x 0), we conclude that
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Vi € A—0, f; has only “stable singularities”, that is, on each singular
fiber of f;y corresponding to a point of C, N (U; x 4) there is only one
singularity which is nondegenerate quadratic. We call g: 052) — Us(z) a
stabilizing family for f| : U, — Us and each fa), 4 # 0, we call a stabilizer
of flg (= fo)). For the uniformity of notation in the case when f|; is
stable, we can take g = (f]g, ) x Id.

Consider U, as an open set in C” (n = dime W) and U; as an open set
in C!. Let D, be a small (closed) ball in U, centered at v and of radius r.
Taking a positive p < r we get a closed disc A, centered at s and of radius
p such that:

(i) vt € A, — s, fg) (1) has no singularities in D, and f5'(s) has only
one singularity v in Dy;

(i) Ve € Ay, f(a)‘(t) intersects transversally with S?#~! = aD,.

Fixing a point uy € A, we identify f(a)‘(uo) N D, with a Milnor fiber
M{(ug,v) of fo) over u.

Let g: U, x A — U, X A be a stabilizing family of Jio) (as above). Taking
a positive ¢ < p and replacing A by a disk Ao centered at (0) and of
radius ¢ we can see the following:

(iii) VA € Ag g, f(3) has no critical points in f(;)l (0A, x A);

(iv) VA € Agp and Vi € A, X 4, f(z)l intersects transversally with
Sl x A =8D, x A.

Denote N(fiy,%0) = f3'(uo x 4) N (D, x 4), N(fn) = f3,'(8p x AN
(Drx4), N(8) = 87 Y (A, xAe0)N(Dyx A, o), and by p: N(g) — A, the natu-
ral projection. Clearly N(fq),uo) coincides with the Milnor fiber M (u, v)
of f) over ug. From (iii)-(iv) it follows that p: N(g) — A, is a (trivial)
C®°-bundle, so that we can identify (diffeomorphically) p: N(g) — Ao
with N(fg)) X Aco = Agp.

We can choose a trivialization of p: N(g) — A, so that

g7 (1o x Ae0) N (Dr x Acp) (= | Sz (o x )N (D x 4))

A€A:p

will be a subproduct of N(fg)) x A, . Choosing a trivialization of p: N(g)
— A, 0 we denote corresponding projection N(g) — N(f)) by g: N(g) —
N(f0)). Denote by g;: N(fz)) — N(fj)) the diffeomorphism defined by
the chosen trivialization of p: N(g) — Aq0, 41 = q|n( )

Take A € Acp — (0) and let a be a critical value of f;) in A, x 4. Con-
nect a with #p X A in A, x A by a simple path y: [0,1] — A, x 4 avoiding
other critical values of f;y. Let c(a) be the critical point of f; in f(;)l (a).
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Because c(a) is a nondegenerate critical point of f; (4 # 0), there ex-
ists a continuous map ¢,: $"~! x [0, 1] — N(f;;)) such that Vu € [0, 1],
0,(S"™1 X 1) € £ () N N(fay), 0(S"~" x 0) = c(a), and Yy € [0, 1],
U #0, 9,(S""! x u) is a smooth (n — 1)-sphere in Int(f(z)I ()N (D, x 1))
which for u sufficiently close to (0) represents a generator of H,_; (Milnor
fiber of c(a) over y(u)), and Im(g,) is a smooth n-disk in N(f;)) with the
boundary equal to ¢,(S"~! x 1) C N(f, 4o) (= 3! (2(1)) " N(fi))-

Denote A,; ., = Im(p,) and call A,,,, a relative Lefschetz cycle in
N(fs) (corresponding to a, y, up).

Clearly 8,4, represents a vanishing cycle in /' (1o x 2).

Definition 4. We say that a smooth n-disk A(ug) is a relative Lefschetz
cyclein (N(fq)), N(f), o)) if in some N(f)), A # O, there exists a relative
Lefschetz cycle A, ,, such that A(ug) = g1(Aay.u,) (O Alug) = q(Aayu,))-
Evidently dA(u) represents a vanishing cycle in f(g)l(ug).

Denote

N'(fu), Ug) = aN(f(x), uo),

N = U Uz on@ED x ),

tEA, XA

N = | M) (= U ('@an@Dnx z))) :

A€A.0 (LA)EAY X Dop
From (iv) above it follows that each N’(f;),up) is a C*-manifold,
Jylwy: N'(fiw) — Ay is a C=-bundle with the typical fiber N'(f(z), uo),
and gy g): N'(g) — A, x Agp is a C™-bundle with the typical fiber
N'(f0)> to)-

We can choose trivializations of p: N(g) — Ao (see above), of
fEO)IN'(f(O)): Nl(ﬁg)) — Ap and of glN’(g): Nl(g) — Ap X Ae,Os so that af-
ter identifying N(g) with N(fg)) X Ac0, N'(fi0)) With N'(f(0), 4o) x A, and
N'(g) with N'(f), ug) X A, x Ao we will get that (N'(fg), uo) X Ap) X Ago
will be a subproduct of N(fg)) X A¢o-

After choosing such trivializations we also have for each A € A, ¢ a triv-
ialization of fiy|n(z,): N'(fin) — Ap x 4 such that g;: N(fz)) — N(/q)

(obtained from N(g) = N(fi) X Aco ™ N(f{p)) transforms it to the
chosen trivialization of f(o)|n+(s,): N'(f0)) = Ap-

Proposition 2. There exists a finite number of relative Lefshetz cycles
Ai(uo), -, A (o) in N(fo)) (that is, smooth n-discs in N(fq)) with
Ai(ug) N N(fo), o) = 0Ai(ug), i =1,--- ,v, each dA;(ug) represents a van-
ishing cycle in f(g)'(uo)), such that N(fq)) can be retracted to N(f ), tg) U

(U7Z; Ai(ug)). Moreover, this retraction can be chosen so that on N'( _f(o)) it
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coincides with a retraction of N'(fo)) to N'(fi0), uo), corresponding to the
chosen trivialization of foylwv ey N' (o)) — Bp and a retraction of A, to
Up.

Proof. Take A € A;p — 0 and let a;,---,a, be all the critical val-
ues of f;, in A, x 4. Choose a system yj,---,7, of simple paths in
A, x A connecting aj,---,a, with #y x 4 and meeting only at uy x A.

For i = 1,---,v let Aj(ug) = Ag, 4 (relative Lefshetz cycle in N(f;))
corresponding to a;,y;,up). Then there exists a retraction of N(f;) to
N(fiz,u0) U (U;’ZIA;(uO)) which on N'(f;)) coincides with a retraction
of N'(fiz)) to N'(fu,uo), corresponding to the chosen tr1v1allzat10n of
Sl sy s N'(fwy) — A, x 4 and a retraction of A, to up.

Applying the dlﬁ"eornorphlsrn @ N(fuy) — N( f(o ) and observing that
@i (N(fzy x ug)) = N(f0),Uo), and each qA(Aj-(uo)) is a relative Lefschetz
cycle in (N(fo)), N(f0), 4o)), we obtain from the retraction above a retrac-
tion of N(f(g)) satisfying all the conditions of the proposition. q.e.d.

Going back to f: W — T (dime T = 1) let us assume that there is a
closed submanifold Y in W such that f(Y) =T, fly: Y — T is a C-
bundle and Y N S(f) =

Take t € T — Sb(f) and connect 5 (€ g,(f)) to ¢ by a simple path I" in
T withI'nS,(f) =

Considering again N (f©) and N(f®, ug) (= M(uo, v), the Milnor fiber
corresponding to v and ug), assume that ug = I'n BA and denote by I
the part of I from u; to ¢.

Sl f7HI") = T is a C*-bundle, and f| - pyny: 71 (T)NY —
I is a C*®-subbundle of it. Take a trivialization of f~!(I") — I"" such that
it will give also a trivialization of f~!(I")NY —TI". Let I1: f~Y(I") — E,
(= (1)) be the corresponding projection. Then II(f~'(I")NY) = YNE,.

Take N(f©) small enough so that N(fO)NY = @. Let A(up) be a
relative Lefshetz cycle in (N(f©), N(f9, ug)). Then A(ug) N f~(ug) =
0A(up) is a smooth (n — 1)-sphere representing a vanishing cycle in E,, =
S~ Y(ug). Denote

A(ug,T) = A(uo) U (II” 1 (TX(8 A(uo))))-

Because A(up) is a smooth n-disk, A(ug) NI~ (T1(8A(uo))) = 8A(ug), and
I1-Y(IT(8A(uy))) is diffeomorphic to S*~! x [0, 1], we see that A(ug,I') is
an n-disk in W. Clearly A(ug,I)NY =&, A(ug,I') N E; = 0A(ug,T") and
8A(ug,T) is a smooth (n — 1)-sphere representing a vanishing cycle in E;.

Definition 5. We call any A(ug,I") obtained as above a relative Lef-
schetz cycle in (W, E,) or (W - Y, E, - E,NY).
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Proposition 3. Let f: W — T and Y ¢ W be as above. Assume that
T is topologically an open 2-disc, and that S(f) = q(f), that is, the fibers
of f have only isolated singularities. Let ty € T — Sp(f) and E,, = f~(t).
Then there exists a finite number of relative Lefschetz cycles Ay, - - - , A in
(W =Y, E,,—E,,NY) (that is, smooth n-disks in W ~Y with AyNE,, = 8A;
(uo), i = 1,--- , u, each A represents a vanishing cycle in E,) such that
W can be retracted to E;; U (Ui, Ayy). Moreover, this retraction can be
chosen so that on Y it coincides with a “trivial retraction” of Y to Y N E,,
(= (fly)~(to)) corresponding to a trivialization of fly: Y — T and a
retraction of T (topologically a 2-disc) to ty. In particular, W — Y can be
retracted to (E;, — E, NY) U (UiZ, Ay)-

Proof. Leta,,---,a, be all the critical values of f in T, for each i =
1,---,u let d; be a small disc centered at a;, and let a} be a point on 8d;.
LetI,i=1,---,pu, besimple paths in T — J;_, d; connecting the a/’s with
to and meeting only at #,. First we retract W to f~!(U/L (I ud;)) so that
on Y we use a retraction corresponding to a trivialization of fly: ¥ —» T
and a retraction of T to UJ;_,(I"; U d).

Next, using Proposition 2 we retract each f~'(d;), i = 1,---,pu,
to f~Ya)) u (U,V"; Aj(a})) respecting “trivial retraction” on Y, where
Aj(a}) are some relative Lefschetz cycles in (f~!(d;), f~!(a})). Thus, we
get a retraction of fNUL T U dp)) to fHUL, THU
(UL UL, Aj(a})), respecting a “trivial retraction” on Y.

To finish, use a trivialization of f~'(UJ/_, ;) — U/, I'; respecting the
chosen trivialization of f|y: Y — T, a retraction of f~!({JiL, I"}) to E,
corresponding to this trivialization and a retraction of | Ji_, I'; to ¢y, and
the definition of relative Lefschetz cycles in (W — Y, E,, — Y N E,,).

2. Linear systems of “Lefschetz type”

Let X be an n-dimensional compact complex manifold, © a base point
free linear system on X, and CP" the parameter space for ©. Denote,
vt € CPY, by E, the divisor in ® corresponding to ¢, and the graph of ©
by W = {(x,1) e X x CP¥|x € E;}.

Let f: W — P¥, p: W — X be the natural projections. From the fact
that © is base point free, it easily follows that W is nonsingular. In fact,
p: W — X is a holomorphic CP¥~!-bundle over X.

Denote S(D) = S(f), Sp(D) = Sp(f), a(D) = q(f) and ¢5(D) = q»(f).
vt € CPY we naturally identify E, with f~!(z). ‘As in §1 (see Definition
3) we define for any E,, t € CPYN — S;(D), the set A(t) € H,_(E;), the
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elements of which we call vanishing cycles in E,. We shall write Ap(t)
instead of A(f). We also define the subgroup Gp(t) C Aut(H,_((E}))
generated by Picard-Lefschetz transformations 85, 6 € Ap(¢): 05(z) =
z + (=1)n+D/2(z §)6. It follows from §1 that each § € Ap(¢) can be rep-
resented by a smooth (n — 1)-sphere é in E,, and that each 65 is induced
by an orientation preserving diffeomorphism of E;, a “Dehn twist” defined
by 4.

Proposition 4. Assume that f(S(D) — q(D)) has codimension > 2 in
CPN. As in §1, we denote by

Y, 1, (PN — Sp(D), 1) — Aut(H,_(E))

the natural homomorphism corresponding to the C*-bundle fly _ r-(s,a)):
W — f~Y(Sy(D)) — PN — Sy(D). Then

Im¥, C Gp(1).

Proof. Take a generic line L in CPY. Since codimpy f(S(D)—¢q(D)) >
2, we have LN f(S(D)—q(D)) = &. That means that any singular element
E; of the pencil D, = {E;,t € L} has only isolated singularities.

Using local versal families of isolated singularities (as in §1) it is easy
to show that any local monodromy automorphism of H,_,(E,), where E,
is in a neighborhood of E; with only isolated singularities, is a product
of Picard-Lefschetz transformations (and their inverses) corresponding to
some vanishing cycles, that is an element of Gp(?').

We get that Vloop I in L — LNS,(f) starting at some tp € L— LNS;(f)
the corresponding W(I') € Gp(ty). Because 7;(L — L N Sp(f), %) —
7 (CPN — S4(f), to) is surjective for a generic line L in CPY, we see that

Im lI’t() g GD(tO)'

Proposition 5. Let D be a base point free linear system on X with ()
connected and codimepn f(S(D) — q(D)) > 2. Then for t € CPY — S;(D)
the set Ap(t) (vanishing cycles in E,) belongs to only one Gp(t)-orbit in
Hy 1 (E)). ‘

Proof. The proof follows immediately from Propositions 1 and 4.

Let [D] be the complex line bundle on X and let V' be the linear subspace
in H%(X,&x[D]) which defines ©. For any subvariety ¥ C X we define
the linear system |y, the restriction of © to Y, by the line bundle [D]|y
and the linear subspace in H°(Y,&y[D]|y) which is the image of ¥ under
the restriction homomorphism:

H%(X,0%[D]) — H°(Y,&Y[Dl|y).



ANALOGS OF LEFSCHETZ THEOREMS 59

Definition 6. We say that a linear system © on X is of Lefscherz. type
if the following conditions are satisfied:

(a) D is infinite and base point free;

(b) codim(f(S(D) — g(D))) in CPY (the parameter space of D) is > 2;

(¢) in the case dim¢ X > 2, for a generic F, € D the linear system D|g,
on E, is of Lefschetz type.

Let D be a linear system of Lefschetz type on X. Because D is base point
free, any generic E, € © is nonsingular (Bertini’s theorem). Moreover, if
L is a generic line in CPY, and ®; is the pencil in D parametrized by L,
then it follows from (b) above that any singular element E; € D, has only
isolated singular points. In the case dim¢ X > 2, taking a generic E; € D
we get from (c) and (a) above that D|g, is infinite and a base point free
linear system on E,. Thus two generic E£,, E;, € ® intersect transversally at
nonempty E,NE. by applying Bertini’s theorem to D|g,. In particular, for a
generic pencil D, in D the base point set B; is nonempty and nonsingular,
and V¢, £, € L the corresponding E;, E;, intersect transversally at By =
Etl N Etz-

Andreotti and Frankel proofs of the First and Second Lefschetz theo-
rems can be used almost without changes to prove similar theorems for
linear systems of Lefschetz type.

Proposition 6. Let D be a linear system of Lefschetz type on X, E, be

a nonsingular (generic) element of ©, X' = X — E, Eq be another generic
element in ®, and Ej = Eg — EgN Ee. Then:
(1) there exist smooth n-discs Ay, - -+ , Ay in X', such thatVi=1,--- v,

AyNEy = 0A, A represents a vanishing cycle in Eq (A is transversal
to Ef at Ay N E}), and a retraction of X' to EjU (UL, Aw),
(2) X' is homotopically equivalent to an n-dimensional complex.

Proof. (1) Let D, be the pencil in D containing Ey and E,, (L the
parameter line of ©;), B = EgNE, be the base pointset of D, W, ¢ X xL
be the graph of ©; in X x L, and f;: W, — L, ¢: W, — X be the natural
projections. It is easy to see that ¢ is the blowing-up of X with center B,
so that ¢|y, _,-1(5): WL — ¢~ '(B) — X — B is an isomorphism. Let (0),
(00) € L be the points corresponding to E(g) and E(,). To prove (1) we
apply Proposition 3 (§1) with T = L~ (00), to = (0) W =W — f; ' ((o0)),
Y=9p""(B)— 9 "(B)N f{'((c0)), and [ = fL|WL ((00))"

(2) To prove (2) we apply induction on the d1men510n of X and observe
that E}, = Ey— EgNE,, = Ey— B, where B is a generic element of a system
of Lefschetz type D|g, on Ep. q.e.d.
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Let © be a linear system of Lefschetz type on X, and E a nonsingular
element of D.

Definition 7. A relative Lefschetz cycle in (X, E) is a smooth n-disc A
on X (n = dim¢ X) with the following properties:

(a) AN E = A and JA represents a vanishing cycle in E;

(b) A is transversal to E at each point of ANE.

We also say that an element § € H,_(F) is a good vanishing cycle in E
if 3 a relative Lefshetz cycle A in (X, E) such that A represents J.

Denote by i, the canonical homomorphism

H,(E) — H,(X).

Proposition 7 (Ist Lefschetz Theorem; c¢f. [1]). ¥Yr < n—2, i, is an
isomorphism and i,_, is an epimorphism.

Proof (cf. [1]). We use Proposition 6 with E,, = F and X' = X — E.
Then it follows from Proposition 6(2) that H"(X') = 0 Vr > n + 1. Thus
by the Lefschetz Duality Theorem

H/(X,E)=0 Vr<n-—1.

Now use homology exact sequence for (X, E).

Proposition 8. (1) (2nd Lefschetz Theorem; cf. [2]) Ker(i,_,) is gener-
ated by good vanishing cycles in E.

(2) Hy(X, E) is generated by relative Lefschetz cycles in (X, E).

(3) Any element z € H,(X) can be represented by a cycle of the following

Jform:
u
E miAgy — 7,
i=1

where m; € Z, all A, are relative Lefschetz cycles in (X, E), and y is an
n-chain in E with 8y = Y_i_ mi®A;, y representing a relation between
vanishing cycles 6; = Ay, i= 1, , .

Proof. (1) Using Proposition 6 we can repeat word by word the Andre-
otti-Frankel proof of the 2nd Lefschetz Theorem (see [2, §6, Theorem 3];
our Proposition 6 replaces Theorem 1 of [2].)

(2) Consider

HH(X)j_"Hn(X:E);’ n—l(E)i__"l n—l(X)-

Take any a € H,(X,E), and let b = ,(a). Since b € Keri,_;, it follows
from part (1) of the proposition that we can write b = }_,_, m;J;, where
m; € Z, and each J; is a good vanishing cycle in E. Thus there exist relative
Lefschetz cycles A;;), i = 1,--- ,v, in (X, E) such that each J; = 0A;.
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Leta, =a-Y_, miA;. Thenda; =8a—-3 7 mid; =b-=3 7 _ mid; =
0, and so there exists z € H,(X) such that a; = j,(z).

Let {E;, t € CP'} be a generic pencil in D containing E. Denote Eq = E
and let E,, be another nonsingular element of {E;, ¢ € CP!}, and B =
E,NE. Let ®: X — X be the blow-up of X with center B, B = ®~!(B),
and E, be the proper transform of E; in X. Because ®|; : E, — E, is an
isomorphism, we identify E, with Ey and E., with E. Let By, = EoNB,
let ,

Hy(X = Eoo) - Hy(X) % Hy2(Eoo),

H,(B) % H,_»(Bs) |
be parts of Thom-Ghysin sequences for (X, E) and (B, B,.) respectively.
Let ¢, = H,(®). It follows from Theorem 2 of [2] that ¢, is surjective.
Thus for z above 32 € H,(X) with z = ¢,(%). Consider the following
commutative diagram of canonical homomorphisms:

Hn(B) ' 4 Hn—2(Boo)
. 5 -Ir ;n~ -Ir ﬂn—~2
Hn(X _Eoo) 7’ ) Hn(X) ’;’ n—2(Eoo)
onl -I- \ jn 5 . .
Ha(X) Ho(X = Eoo, Eo)
Jnd o (=)
H,(X,E)

It is easy to see that ¢ and p,_, are surjective by using B = B x CP! and
Proposition 7 for (Es, Bs), 50 there exists y € H,(B) such that g(2) =
tn—2q(y). Since din(y) = pn-2q(y), we get a(2) = gin(y). Let Z) =
2—1n(y). Then 6(Z,) = 0 and so 3w € Hy(X — Eo) such that Z, = l(w).
Thus j,@n(Z1) = jn@al(W) = pjn(W). N '

It follows from Proposi}ion 6 that H, (X Ey, Eo) is generated by rela-
tive L_efschetz cycles, say Al,- . Ap, in (X —Ey — B, Ey— Egn B). Clearly
each A; =®(4)), j = 1 -, D, 1s a relative Lefschetz cycle in (X, E).

Slnce Jn(W) € Hy(X — Eoo, Eo) we can write J,(W) = Y_5_, n;A;, with
all n; € Z. Thus Pin(W) =Y 0_ njA;, and ja9a(Z)) = Y5, n;jA;. Because
2 =27+ i,{y), we have

a1 = ju(z) = jn@n(2) = ju@n(Z1) + jaPnin(¥)

14
= Z +jn(ﬂnin(y), y € Hy(B).

Claim. Vy S Hn(B), jn¢n7n(y) =0.
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Proof. Consider the commutative diagram:

, H,(B)
g L,

H,(B) H,(X)
} &, 1 on

H,(E) ——-;;——)- Hy(X) THn(X’E)

We see that j,0,in(V) = juinll,0,(v) = 0 since j,in = 0. q.e.d.

Now we continue to prove Part (2) of Proposition 8. From the above
wegeta =37 njAjanda = a;+ 37 mily = Y0 A+ 37 midg
where all n;, m; € Z and all _A—j,A(,-) are relative Lefschetz cycles in (X, E).

(3) Part (3) follows immediately from (2) and the exact sequence:

Hy(E) > Hy(X) — Hy(X, E) - Hyr(E).

n

3. Sequences of finite cyclic coverings

Proposition 9. Let X be an n-dimensional compact complex manifold,
S an (n—1)-dimensional complex submanifold of X, and f: Y — X a finite
cyclic covering of X ramified at S.! Let ® be a linear system of Lefschetz
type on X (Definition 6) such that D|s is a linear system of Lefschetz type
on S. Then f*D is a linear system of Lefschetz type on Y.

Proof. Use induction on dime X. It is clear that f*® is infinite and
base point free. Let Dy be a generic pencil in D, and L the parameter line
of D;. Lets € L and ¢ € f*E; N f~1(S). We can assume that there exist

complex analytic coordinates yy,- -, ), in a neighborhood of ¢ on Y, and
X1, -+, Xy in a neighborhood of f(c) in X such that locally f is given by
xi=yni=1--,n-1,x,=y" (m> 1), x, = 01s a local equation of
S at f(c). Let F(x, - :,x,) = 0 be a local equation of E; at f(c). Then
S*E; in a neighborhood of ¢ has local equation F(y1,---,yn—1,¥7) = 0,
and c is singular on f*E; iff
OF oF
—()=0, i=1,---,n—1, m-yu(c)" ' —()=0
5 (@ 5(0)
Since y,(c) = 0, this system of equations is equivalent to
F
0 (¢)=0, i=1,---,n—1;, or aF(f(c)) =0, i=1,---,n-1.

8y, ox;

'We consider only totally ramified cyclic coverings (e.g. f~!(S) = S).
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This shows that a point a € f*E; is singular on f*E; iff f(a) is a singular
point of E; or of E;|s.

Because Dy | is a generic pencil in D|g, and D and D|s are of Lefschetz
type, we see that singular points of E; and E;|s (s € L) must be isolated,
that is, f* E; has only a finite number of singular points. Thus /*® satisfies
condition (b) in Definition 6 the definition of Lefschetz type linear systems.

To check (c) of this definition for /*®, we must take a generic E; € D
and show that f*D| /. is of Lefschetz type on f*E;. Since D|s is of
Lefschetz type, E)|s is nonsingular, that is, E; is transversal to S. Thus
Sy = EynS and f*E, are nonsingular, and f; = flp.g: f*E — E; is
a finite cyclic covering of E; ramified at S;. Let ©; = D|g,. To use the
induction where E; will replace X, we have to check only that D|g, is
of Lefschetz type on Si, or D|sng, is of Lefschetz type on S N E;. But
Dlsng, = (Ds)|g,ns- Since D|s is of Lefschetz type on S and E; NS is
a generic element of D|s, we have that (D|s)g,ns is of Lefschetz type on
EnS.

Proposition 10. Let /.Y — X be a finite cyclic covering of n-dimen-
sional compact complex manifolds ramified at a complex submanifold S of
X. Assume that S is an element of a linear system of Lefschetz type on X.
Yk, denote by g H(Y) — Hy(X) the canonical homology homomorphism
corresponding to f. ThenVk = 1,--- ,n— 1, @, is an isomorphism, and ¢,
is an epimorphism.

Proof. LetS=f"1(S), X' =X-8,Y =Y -Sand f' = fly: Y’ —
X'. From Proposition 6(2) it follows that X’ is homotopically equivalent
to an n-complex. Since f’: Y’ — X’ is a nonramified covering, Y’ is
homotopically equivalent to an n-complex. In particular H¥(Y — S =0
Vk > n+ 1. By the Lefschetz Duality Theorem H,(Y,S) =0Vk < n -1,
and for the same reasons, H,(X,S)=0Vk <n—1.

Claim 1. The canonical homomorphism

W Hy(Y,8) — Hy(X,S)

is an epimorphism.

Proof. We can find a (closed) tubular neighborhood 7'S of .§ in X such
that f~'(T'S) is a tubular neighborhood of S in Y. Denote TS = f~1(TS),
and by ¥, r the canonical homomorphism H,(Y, TS') - H,(X, TS); let
1: H,(X, TS) — H,(X,S) be the canonical isomorphism.

Clearly it is enough to show that y, r is an epimorphism.

It follows from Proposition 8(2) that H,(X,.S) is generated by relative
Lefschetz cycles, say Ay, - - ,Aq,y, in (X,.5). Since each A; is transversal
to S, we can assume that each Aj;) = Ay —A(;) NInt(7'S) is a smooth n-disc
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in X —.§ with 8A(, C OTS. Due to the fact that f]y ¢V -S — X -8
is a nonramified covering we can lift each A’ ( 1o a smooth n-disc A(,-)
inY - Sw1th6A,)C3TS BecauseflA ~~—>A’,i=1 ,V,is a

homeomorphism, we see that each A represents an element of H,(Y, TS)
with y/,,,T(A(, ) = A’l in H,(X,TS). Thus ‘n//,,,T(A, ) = Ay in Hy(X,S).
Because Ay, - - ,A(,,) were generators of H,(X,S), w7 is an epimorphism.
qa.e.d.

Clearly fs: S — S is an isomorphism. Cons1der the following commu-
tative diagrams:
(($a) i ) . ;
H(S) B Huy) &8 Hv.S B H_ (S B H(¥) S OH,_ (1S5

1 in 1 on L wn A F Lonoi bwno

Hn(S) — Ha(X) = Hy(X,S) - Haei(S) = Hpoi(X) 2 He(XS)

n n n n—1 n—1

H(YS) % H_S) S B S H(mS)
((*)ﬁ) L v 1 2y Lo 1wy
H(X,S) o HietlS) = Heea(X) = Hey(X,S)

k—1 Jk=1

Claim 2. @,_, is an isomorphism for k <n - 1.

Proof. Taking k < n-—1in (*)g, and using Hi(X,S) = H,_1(X,S) =
H(Y,S) = H,_(Y,S) = 0 (for kK < n— 1) we get that i,_, and ix_,
are isomorphisms in (+)z (“Ist Lefschetz Theorem”). Since A¢_; is an
isomorphism, we conclude that ¢;_; is an isomorphism for k < n — 1.

Claim 3. ¢,_; is an isomorphism.

Proof. Consider (*),. Because i, is surjective (H,_|(X,S) = 0),
¢n—1 is an epimorphism, so we have to prove that Ker¢,_| = 0. Take any
acKerg,_,. Since H,_,(Y,8) =0, i,—; is surjective. Thus 3b € H,_,(S)
with 7, (b) = a, and 0 = @,_1i,_(b) = in_1An_1(b). Furthermore, 3c €
H,{(X,S) with 8,(c) = 4,_1(b). Since y, is surjective from Claim 1 above,
3¢, € H,(Y,S) with Wn(c;) = ¢ and c'iny/,,gcl) = An—1(B), or Ay_18,(c)) =
An—1{b). But A,,_; is an isomorphism, so d,(c;) = b. Hence

a= fn—l(b) = Zn—lén(cl) = 0.

Claim 4. ¢, is an epimorphism.

Proof. Take any a € H,(X). Because y, is surjective from Claim 1,
3b € H,(Y,S) with y,(b) = j.(a). Since~in_18,,(b) = (b)) = 8yjn(a) =
0 and A,,_~ | is an isomorphism, we get 9,(b) = 0. Thus 3¢ € H,(Y) such
that b = ju(c), and jn(a — ¢n(C)) = Wa(b) — Wnjn(c) = Wn(b) — ¥u(b) =0
Further, 3¢, € H,(S) with @ — ¢,(¢) = in(c1). Since 4, is an isomorphism,
3c; € Hy(S) with Au(cz) = ¢;. Now we have a—@5(¢) = indn(C2) = @nin(c2)
and a = ¢,(c + iy(cy)). Hence ¢, is an epimorphism.
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Corollary of Proposition 10. Ler z be any primitive element in H" (X, Z).
Then f*z is a primitive element in H*(Y,Z).

Proof. Since z is primitive, 3 an element a € H,(X) with z{a) = 1. By
Proposition 10, ¢,: H,(Y) — H,(X) is surjective. Thus 32 € H,(Y) with
f(@) = ¢n(@) = a, and

frz{a)=z(f.d) = z(a) = 1.
So f*z is primitive.

Let X be an n-dimensional nonsingular projective algebraic variety, X C
CPY, and D be the linear system of hyperplane sections of X. Assume that
X does not belong to any hyperplane of CPY. Let Sy, - - - , S be subvarieties
of codimension one on X such thatVj,,---,j; € {1,2,--- ,k}, S;,n---NS},
is nonsingular and UI;=1 S has only normal crossing singularities.

Let my,--- ,my be positive integers such that S; is divisible by m; in
Pic X for any j = 1,--- , k. Define inductively finite morphisms «;: X; —
X,j=0,-,k, as follows: Xo =X, ap =1d, and if o;_1: X;_; — X is
defined, let §;: X; — X;_; be the cyclic covering of degree m; ramified at
Otj__ll(Sj), Qj=aj_y Oﬂj.

Denote D; = a}D, inverse images of divisors of D, and by D, sing x, VX €
X, the set of elements of © which pass through x and are singular at x.
Dy.sing x 18 a linear subsystem of D.

Proposition 11. Assume that Vx € X the linear system Dy ging x 1S infi-
nite and base point free in X — x. Let E, be any nonsingular element in
Dy, Ap,(t) C H,—\(E,) be the set of vanishing cycles in E,, and Gp,(t) be
the subgroup of Aut(H,_,(E,)) generated by all Picard-Lefschetz transfor-
mations {05,0 € Ap,(t)}. Then Ap,(t) belongs to only one Gp,(t)-orbit in
Hn—l(Et)-

Proof. Denote by T = CPV* the parameter space of D. Let E, € D be
the element of D corresponding to ¢ Vi € T. As in §2 denote the graph of
Dby W={(x,t)eXxT|x€E;}. Let f: W— T and p: W — X be the
natural projections. It is easy to see that W is nonsingular, and actually
p: W — X is a holomorphic CPY~!-bundle over X.

Set W, = W xx Xj, denote the canonical projections by g,: W, — W
and py: W, — Xi, and set f, = fogi: W, — T. It is clear that W, =
{(a,t) € Xy x T|a € E;}. We claim that ¢(®D;) = q(f;) is connected.? To
see this we have to use the following two claims.

Claim 1. Let Y be any nonsingular algebraic variety in CP”. Denote
by #, Vt € T = CP¥*, the hyperplane in CP"* corresponding to ¢, and
by Fra, Va € Y, the dim Y-dimensional linear subspace in CP¥ which is

2The simplified proof of this statement was suggested by the referee.
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tangent to Y at a. Let us say that /% is tangentto Y ata € Y if Z D Fy,.
Denote 1y = {(a,t) € Y x T|# is tangent to Y at a}, and by py: 17y — Y
the natural projection. Then py: 7y — Y is a holomorphic projective
bundle over Y.

Claim 2. (Using the notation of the proposition). Denote by 7 the set
consisting of X and all S;, n---NS;,. Then

S(fi)=J & '(z¢) (each zc c W).
cel

The proofs of these two claims are standard. In the proof of Claim 2
we have to use that Va4 € X, the map «; : X; — X can be defined locally
by: x; — x, a; > 1, integers, i = 1,--- ,n.

For any C € I (see Claim 2) denote g¢c = g(fi)Ng; '(t¢). Because q(fi)
is open in S(fi), each qc is open in g~ (z¢). From Claim 2 it follows that
q(fx) = Ucer dc- Since pli.: 1¢ — C is a projective bundle, we get that
gk‘l(rc) L3 a;I(C) is a projective bundle and in particular Va € a;l(C),
p;'(@)n g '(t¢) is a complex projective space. So if p;'(@) Ngc # 2,
then pk_‘(&) N gc is a nonempty Zariski open subset in pk_l(&) N gk_l(rc)
and thus irreducible and connected. In particular, when p,° Ya)ngc # 2,
there is only one connected component of g¢ intersecting p,- ! (a). Denote
this component by gc ;.

Clearly all connected components of g¢ (for go # &) can be represented
asqc; for some b € X, . From the assumptions of our proposition it easily
follows that gy # &. Thus gy is connected; it is a nonempty Zariski open
subset in the projective bundle g, "(1x) over X;. So to show that g(f;)
is connected, we have to prove only that for each qdc; the intersection
dcpNdx # 9.

Take any g.; and let b = ox (B). Because Dy gingp is infinite and base
point free on X — b, there exists E;, € ® such that E;, > b, and b is the
only singularity of E,. Then E, has only isolated singularities, and b is
one of them. Thus we get (b, t9) € q(f), (b, %) € 1, and so (b, ty) € gx.
Since #;, must be tangent to X at b, it is also tangent to C at b, that is,
(b, ty) € 1¢. So (b, 1) € gk“l(_rc) N q(f) = gc which implies (b, o) € dcj-
Hence depNdx # .

So we have proved that g(f;) = ¢(®D,) is connected.

By Proposition 9, @), is a linear system of Lefschetz type in Xj. Thus
codimr fi.(S(Dy) — (D)) > 2. Because g{®y) is connected, it follows
from Proposition 5 that V¢ € T — S3(Dy), Ap,(¢) belongs to only one
Gyp,(t)-orbit in H,_;(E,). gq.e.d.
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Assume now that dime X = 3, b,(X) = 1, and that for a nonsingular
E, € Dy and the canonical class K, K} #0. Let i Hy(E,) — Hy(X)
be the canonical homomorphism for E; — X, and u: Hy(Xy) — Hy(E))
be the “intersection homomorphism”. From the adjunction formula it
follows that Je € Hy(X) such that u(e) = K.

For any vanishing cycle § € H,(E,) we have (Kg,"0)g, = (e-i(d))x, = 0.
Denote by (K E,) the maximal rank-one submodule in H,(E,) containing
Kg, and by Aut(H2(E,),(K E,)) the group of all intersection preserving
automorphisms o of H,(E,) such that Vz € (K;), a(Z) = Z. From
(Kg, - 0) = 0V vanishing cycles § € Hy(E,) it follows that V8 € Gp,(¢)
and Vz € (Kg,) 6(z) = z. Thus Gp, () C Aut(H2(E,),(KEI)).

Denote by ¥, the submodule in H,(E,)/(Tor) generated by all elements
of Agp,(¢) (all vanishing cycles in Hy(E;)). Let &), be the group of all
automorphisms of ¥V preserving the intersection pairing. Evidently there
is a natural homomorphism of Gyp, (¢) in &y,

From Proposition 11 and ,(X) = 1 it follows that b,(X;) = | and thus
by(Xy) = 1. Kf?, # 0 implies now that e generates Hy(X;) ® Q.

Let z € Hy(E;) be such that (z- K )z = 0. Thus 0 = (z - u(e))g, =
(i(z) -e) and i(z) = 0 in H>(X) ® Q. Using also Ké # 0 we get the
orthogonal decomposition:

HyE)®Q = (Keri®Q) & ((Kz)® Q).

i

From this decomposition and the Proposition 8(1) it follows that if the
image of Gp, (1) in &y, has a finite index, then Gy, (¢) is a subgroup of finite
index in Aut(Hy(E,), (Kp)).

On the other hand, by results of Ebeling (see [3], [4]), Gp, (¢) will have
a finite index in &y (E,) when the following conditions are satisfied:

(1) D has an element E; with only isolated singularities, one of which
has in its versal local deformation the so-called %), (Arnold) singularity
(it is given by z3 + y3 + x* = 0 (see [3]).

(2) Ap,(t) belongs to only one Gy, (¢)-orbit in H,_;(E)).

Proposition 12. Assume as in Proposition 11 that ¥Vx € X, Dy singx IS
infinite and base point free in X — x. Assume also (as above) that dim¢ X =
3, bh(X) =1, K%’ # 0 and that there exists E; in D such that all singularities
of E; are isolated and one of them has in its versal local deformation the
so-called %y, singularity (locally of the form z3 +y3+ x* = 0). Then Gp,(t)
is a subgroup of finite index in Aut(H,(E,), (Kg,))-

Proof. The proof follows from remarks above (Ebeling’s results) com-
bined with Proposition 11.
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Proposition-Example 13. Let X = CP3, & be the linear system of all

quadrics in CP3, and S,--- ,Si be k nonsingular surfaces in CP3, such
that each S; N---NS;, is nonsingular and Ui;l S has only normal crossing
singularities. Let {my,--- ,my} be positive integers such that m; divides

degS;, j = 1,---,k. Define inductively a;: X; — X, j = 0,--- ,k, as
Sollows: Xo =X, ap=1d, and if aj_y: X;— — X is defined, let B;: X; —
X;_1 be the degree m; cyclic covering of X;_, ramified at aj__ll(Sj), aj =
aj_yoB;. Let Dy = of®, and let E, be a generic element in ©;. Assume
that 3jo € {1,---,k} such that mj, > 3 and degS;, > 4. Then Gp,(t) isa
subgroup of finite index in Aut(Hy(E,), Ky )).

Proof. We shall use Proposition 12. Take any x € X. Considering all
quadric cones in X = CP3 with the vertex at x, we see that Dy g, is
infinite and base point free in X — x. Without loss of generality we can
assume that jo = 1.

Let (xo: X : X2: x3) be homogeneous coordinates in X = CP3, 4 = x}+
x3xp, Q, F, G be some generic homogeneous polynomials in (xg: x): X;: X3)
with the following properties: :
(a)degQ =2,degF =m; —4,degG=m; — 2;

@) {xi=x=0n{Q=0n{G=0}=2;

() {A=0}N{F=0}n{Q=0}N{G=0}=2;

(D{x1=x=0n{Q@=0Nn{F=0}=02.

Using Bertini’s Theorem we can see that for generic F, Q, G as above
and a generic A, the surface of degree m, given by

Sji={4-F+1Q -G =0}

in CP3 is nonsingular. -

Denote by E; = {Q = 0} and let #,: X; — X be the finite cyclic covering
of degree m; of X = CP? ramified at S, ;. Let S, = {S1.2N Es}. Then
31,,1 is a curve on E; which has two singular points, say ai,a;, of type
x% +y3 = 0 (they are the points of E;N {x; = x, = 0}). S, is the branch
curve of the cyclic covering £1l5-15,: BT YE) — E,.

Let E;y = 7 (Es), b; = B '(a;), i = 1,2. Clearly at each b;, i = 1,2,
E; | has the singularity locally given by z™ = y3 + x*. Since we assume
that m; > 3, this singularity has in its local versal family the singularity
zMm +gz3 = y3 4+ x* (|e| < 1) equivalent to z3 = y3 + x*, that is type %
singularity.

Now choose generic surfaces S, -+, Sk, in CP3, degS;; = mj, such
that each S; ; Nn---NS;1 Ji,--,Jit € {l,---,k}, is nonsingular and
that Ule S1 has only normal crossings. Deforming given S, --,S; to
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Si4 -+, Sk, we see that it is enough to prove the proposition in the case
S; = §;,;. Since in this case all conditions of Proposition 12 are satisfied,
Gp, (t) is of finite index in Aut(Hy(E;), (Kz)).

4. Examples of (orientation preserving) homeomorphic and not
diffeomorphic simply-connected algebraic surfaces of general type

Using a new invariant of S. Donaldson the following theorem was re-
cently proved by R. Friedman and J. Morgan (see [6, §3]).

Theorem (R. Friedman-J. Morgan). Let S| and S, be two simply-
connected algebraic surfaces of general type. Suppose:

(1) orientation preserving diffeomorphisms of S; (j = 1,2) induce a sub-
group of finite index in Aut(Hy(S;), (Ks;));

(1) pg(S1) and pg(S,) are even;

(iii) Ks, = njk;j, wheren; € I*, k; € H2(S;,Z) is a primitive cohomology
class, and ny # n,.

Then S| and S, are not orientation preserving diffeomorphic.

We shall apply this theorem to some abelian Galois coverings of CP' x
CP! with branch loci having only normal crossing singularities. More
explicitly let Yy = CP! xCP!, ], = pt xCP!, [, =CP!' xpt,and C = [, +1,.
Let {x;,x3,-- -} be a sequence of positive integers. Define finite coverings

(X, ,xk) = gk Y(x1,+ -, Xx) — Yo as follows:
Let go = Id. Assume that g,_, is already defined. Let fi.: Y (X, -, x)
— Y(xi,--+,Xr_1) be a triple cyclic covering of Y (x, -+ ,x,_) (for k = 1

of Y5) with nonsingular branch locus B, linearly equivalent to g;_, (3x,C).
Let gx = gk—1 " fi-

Lemma. LetY, =Y(x, - ,xy), and C, = g;C. Then

(1) Ky, = 2T xi = DGy

(2) H(¥e) = 8- 35((TL, xi) — 1)%;

(3) the index 1(Y;) = —16 - 3*~1(*_ x2);

(4) x(Ye) = 1+ pg(¥ie) = 3K(TiLy xi — 1)2 +2- 3 1(, xP).

Proof. Useinduction on k. The lemma is true for ¥y = Y (J) by taking
“all x;”=0. Assume it is true for ¥,_; (k > 1).

Since Ky, = f{Ky,_, + %/ B and by the inductive assumption Ky, , =
2(X%5 X — 1)Ci_y, we have

Ky, = 2205 % = DG + 200G = 2(Ti, %1 = DG

Using C? = 2 - 3% we get
H(Yi) = K3, =8- 35T x - 12

i=1
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This proves (1) and (2) of the lemma. From Ky, = /'Ky, , + 3/ By it
follows also that ¢?(Yy) = 3¢?(Yk—1) + 4Ky,_, - Bi + 3B2. Using &2(Y) =
362(Yk_1) - 2C1(Bk) and —2Cl(Bk) = 2(Kyk_l + Bk) . Bk we get
1(Yy) = 1(cf(Xr) — 2c2(Y))
= 1[3c}(Yi—1) + 4Ky,_, - Bi + 4B} — 6¢2(Yy—y) — 4Ky, _, - Bi — 4B}]
= 1[3(cf(Yaz1) — 2¢2(Yi—y)) — §BE1 = 31(Yi—y) — $BL.
By inductive assumption 7(¥;_,) = —16-3*~2(3-*7' x2). Because By =
gi_,(3x,C), we have B} = 3k=1.9.x2.2 and —§B? = —16-3*"'x}. Thus

i=1

=-16-3K"1. 3% X2

i=1

(V) = —16 - 35 1(24 0 x2) — 16 - 3412

This proves (3) of the lemma. Since
1

12(C%+Cz)=x,

(c} — 1) = glct = $(c} - 20)1 = £ Bt —cf +200) =

00| —

we have

x(Ye) = $ef (Vi) — 1(Yi)]
= 48 35(Th, xi — )2+ 16- 3% 11, X7

i=1

=3k (TF - 1242301 K2,

i=1

It is easy to see that each Y} is simply connected. So x(Y;) = 1+ pg(¥%).

Remark 1. From (1) of the lemma it follows that each Y (xy,:--,x;) is

an even 4-manifold, and from (2) and (3) we can deduce that if {x;,--- ,x;}

and {y,,---,y;} are two sequences of positive integers, then the corre-

_sponding Y(x,---,x;) and Y(y,---,y;) are (orientation preserving)
homeomorphic iff

3"(Ef=1 xi— 1) = 3I(E$=1J/j 1),

3! Eé{:l xf =3 Ef:l Vi,
by using (Y (X1, -, %)) = 71 (Y (Y1, , ;) = 0 and the results of M.
Freedman [5].
We can reformulate the conditions above as follows: Y(x,,---,x;) and
Y(y,,---,y;) are (orientation preserving) homeomorphic iff
(a) k =1 (mod2);
(b) Yok, x; = 3U4-R/2 () y;) = 30972 4 1; and

=1

(€ Th x}=3-*%"_ y2
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Remark 2. From (4) of the lemma it follows that p, (Y (x,---,x;)) is
even iff Eli‘zl X; is even.

Remark 3. Taking in Proposition-Example 13 (see §3 above) all m;,
j =1,---,k, to be equal to three, identifying Yy = CP! x CP! with a
generic element E of the linear system ® of all quadrics in X = CP3, and
choosing appropriate hypersurfaces Si,---,S; in CP3? (see Proposition-
Example 13) with $; N E € |3x,C|, C € |l + L] ¢ E = Y;, we obtain
finite coverings «;: X; — X such that Y (xi, - ,x;) = a; '(E), and g =
(X1, -+, %) Y{xy, -+ ,x;) — Y coincides with ak]ak_l(E): a,j‘(E) — E.
Assume iy € (1,--- ,k) such that x;, > 2. Then degS;, > 6 and we get
from the Proposition-Example 13 that orientation preserving diffeomor-
phisms of Y (x|, ,xx) (= o '(E)) induce a subgroup of finite index in
Aut(Hy(Y(x1, -, Xi))s (Ky(e, x)-

Remark 4. From the Corollary of Proposition 10 (see §3) it follows that
g C belongs to a primitive cohomology class in H*(Y (x,- -+, x;), Z).

Proposition 14. Let m be any nonnegative integer, and {l,,--- ,l,} any
sequence of m positive integers with E;”:l [; even (for m = 0 we take the
empty set). Lety, =y, =y3 =y =1, y5 =6andV¥j=1,---,m,
Vsoj=1x1 =2 x=10,x3=16andVj =1,--- ,m, x3,; = 3l;. Take
k=m+ 3,1l =m+5. Then the corresponding Y (x1,--- ,x¢), Y(¥1, -+, V1)
are (orientation preserving) homeomorphic and not diffeomorphic simply
connected (minimal) algebraic surfaces of general type.

Progf. Letusfirst check that Y (xy,--- ,x,)and Y (yy,- -+ ,),) are (orien-
tation preserving) homeomorphic. Use Remark 1 above. Let M = E}"zl L
and N = )7, [7. We see that in our case / — k = 2 and

YK X =2+ 10416+ 3", 1, =28+ 3M;

i=1
Sy = 1AL+ 14647 L =10+ M.

Thus condition (b) in Remark | is equivalent here to 28 + 3M = 30 +
3M - 3+ 1 which is true. We also have:

Yh xP=4+100+256+ 957 2 =360+ 9N,

Sy =14+ 14141436+, 2 =40+ N,

J j=1%j
Condition (c) of Remark 1 is equivalent here to 360 + 9N = 9(40 + n)
which is true. Thus our Y(x;,---,xy and Y(y;,---,y;) are (orientation

preserving) homeomorphic.
Nowlet S; = Y{x,---,x),S2 =Yy, - ,y;). Toprove that S| and .S
are not diffeomorphic we use the theorem of R. Friedman and J. Morgan
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mentioned above. We have to check that S| and S, satisfy conditions (i),
(i), (iii) of that theorem. From Remark 3 above it follows that S, and S»
satisfy condition (i).

Because M = 37" ; is even, Eé‘:l x; =28+ 3M and Zi.:lyj =10+M
are even. Thus by Remark 2 above p,(Si) and pg(S>) are even numbers.
So condition (ii) is satisfied.

To check (iii), let K5, = n;P;, where n; € Z*, and P; € H*(S;,Z) is a
primitive cohomology class. Denote #; = gr{x, - ,X¢): S1 — Yo, and
ha = g(¥1,--+,¥1): S2 — Yo. Using Remark 4 above we see that #;C is

primitive in H%(S;,Z), j = 1,2. Thus by (1) of the lemma above we get
that n; = ((Ef-‘zl X;)—1)=2(28+3M —1) and n, =2(10+ M — 1), that
is n; = 3n,. So n; # no.
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